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Robust Control of Feedback Linearizable
Large-Scale Systems
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The design of decentralized controllers for a class of uncertain interconnected nonlinear

systems is considered. The uncertainty considered here is time-varying and appears at each
subsystem and interconnections. Two control techniques are explored. The first one, namely, the

feedback linearization control, involves a known and autonomous nonlinear system. The second

one, namely, the robust control, is especially suitable if any uncertainty and/or time-varying
factors are involved in the nonlinear dynamics. These two controllers are combined to stabilize

a class of large-scale nonlinear uncertain systems. Two decentralized robust controllers, non

adaptive and adaptive, are proposed and those results are proved.
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1. Introduction

Modeling of large-scale systems IS often de
scribed by a set of interconnected subsystems. The
considered uncertainties are nonlinear (possibly
fast) time-varying and are distributed into the
inner portions of the subsystems and the inter
connections. In practice, it may be difficult to
acquire their real statistical properties a priori.
Under these circumstances, it may be desirable to

adopt a deterministic approach which is based on
the possible bounds of the uncertainties.

Decentralized control is an effective way for the

large··scale systems since each subsystem can be

independently controlled. Important work on
decentralized control of large-scale uncertain sys

tems can be found in (Chen, 1988 ; Chen and

Han, 1993 ; Han and Chen, 1991, 1992b ; Gavel
and Siljak, 1989 ; Ikeda and Siljak, 1990 ; Ohta et
al., 1986 ; Park and Lee, 1993; Siljak, 1989) and
their bibliographies. In (Chen, 1988), two classes
of control schemes, namely, the local and the
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global, are proposed. The local control is based
on the state information of only each subsystem,

while the global control utilizes the extra feed
back information from the states of neighboring
subsystems. This work falls into the local cate

gory.
Feedback linearization provides a unified

approach for the design of nonlinear system con
trollers. However, the robustness of the resulting

controller can not be guaranteed. Several methods
have been used together with feedback lineariza

tion to increase the robustness of the control.

These include, for example, variable structure
control (Sira-Ramirez, 1986), adaptive control

(Sastry and Isidori, 1989 ; Taylor et al., 1989)
and Lyapunov based method (Spong and Sira
Ramirez, 1986 ; Calvet and Arkun, 1989). In this
paper, the results of the Lyapunov based

approach are extended to large-scale systems.
A diffeomorphic state transformation is first

applied to each subsystem. The transformation
together with a nonlinear control render the
nominal system to be controllable-like. An extra
control effort is then added to the nonlinear
controller to ensure satisfactory results even if the
uncertainties appear. Two control schemes, name
ly, non-adaptive and adaptive robust controls, are



178 Myung-Chul Han

proposed. In the non-adaptive robust control

design, all the bounds of uncertainties are given

and the control gain parameters are related to the

bounds. In the adaptive robust control design,

this prerequisite of the bounds can be relaxed if

each subsystem does not have uncertainty in the

input matrix. However, an additional requirement

on the uncertainty bounds, namely, cone

boundedness, should be satisfied. An adaptive

algorithm is adopted to track the bounds of

uncertainties of each subsystem and the control is

based on this estimation. The related work can be

found in (Chen, 1990 ; Corless and Leitmann,

1983).
The main contributions of this work can be

divided into three parts. First, it is shown that

feedback linearization is sucessfully combined

with robust control to supply a systematic control

design method for nonlinear large-scale uncertain

systems. Second, decentralized robust controls are

proposed, where the bounds of interconnections

are explicitly taken into acconunt while the neigh

boring states are not required. Third, an adaptive

algorithm is adopted to guarantee the desired

properties in spite of insufficient information of

uncertainty bounds.

2. Interconnected Systems

We consider a class of uncertain large-scale

systems S which are composed of N interconnect

ed subsystems 5;i described by

Furthermore, the known functions j,( . );R n, -+ Rn,

and g,(. ):R n, -+ R n, and the functions (known

or unknown) Llj,( . ):Rn, X ~ i ---> Rn" Llgi( •):R n, X

~i--->Rn" and ri/·):Rn'xRnJX~i-+Rn, are

continuous.

The following assumptions are introduced.

Assumption 1: There exist continuous functions

h i ('): Rn'X~i--->R, li('): Rn'X~i-+R, and

cu(') : RnJx ~i -+ R such that

Llj,(Xi' Oi) =gi(X,) hi(Xi, Oi)

Llgi (x" 0,) = gi (Xi) Ii (Xi, 0,)

YU(Xi, Xh Oi) =gi(X,) CU(X" Xh 0,)

pu=min OiE~J,(Xi' 0,)

> -1 (2)

for all (Xi. xJERniXRnj and O,E~i.

With this assumption, The system equations (1)

can be written as

S'i: Xi=j,(X,) +gi(X,) [hi(Xi, 0,)

+ (1+ Ii (Xi. O,))Ui

Remark: Assumption 1 assures that all uncer

tain portions Llji, Llgi' and ru in each subsystem

are contained in the range space of the nominal

input matrix gi' This structural condition on the

uncertainty is usually called the matching condi

tion (e.g., Leitmann, 1891 ; Gavel and Siljak,

1989). Work on the relaxation of the matching

condition can be found in, e.g., (Chen and Leit

mann, 1987 ; Ikeda and Siljak, 1985).
For convenience, we define

for all iEN, N={l, 2, "', N}. Here tER is the
time, Xi U) ERn, is the state, Ui (t) E R is the

control, and Oi (t) E R q, is the uncertainty. Both

the internal uncertainty (i.e., Llj, and Llg,) and

uncertainty in the interconnections (i.e., riJ are
considered. It is assumed that the unkown funtion

Oi( .); R -+ L:, is Lebesgue measurable where L:,
cRq, is a compact set (known Of unknown).

Si: Xi(t)=j,(Xi(t))+Llji(XiU), OiU))

+[gi(Xi(t)) +Llg,(Xi(t),
N

o,U) )JUiU) +~ YU(Xi(t) ,
j=l
i*"i

Xi (0) =x£(} (I)

N

x=[x{, x[,,··,x.z;yERn, n= L: ni
i=l

XO=[XI~' xlo,,··,x.z;oyERn

U=[UIo uZ"",uNyERN

N

o=[o{, 0[," ',okY ERq, q = ~ qi
i=l

j(X) =[/1 (XI) T, jz(xz) T• ....

jN (XN. ON) TyERn

Llj(x, 0) =[Llj; (xI.od T, Lljz(XZ,OZ)T, "',

LljN(XN, ONVjTE Rn

G (X) =diag{gl (XI) T, gz (Xz) T. "',
gN(XN)}TERnxN

Lle; (X, 0) =diag{Llgl (Xl, 01) T,

Llk~(X2. 11")1"",

L1j..flV(X,v, (J,tv')] J(-=RrI/N
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=Zi3

(8)

(6)

= L]i Til + (Ll<iLfi l~j) [h,+ (1 + l,) III

+j~ cu]
j=l .

=Zi2

= L f ,Til + (L g,T,j) [h,+ (I + I,) u,

N ]
+.~ICij t

);=-/

2:'2= (\7 L f ,T'l) /i+ (\7 Lf; Til) g,

[hl+ (1 + I,) Il,+ ~/u]
j4"i

L~,T,j= l~j

IJi T'l = \7 Tid,
Vr,T'I=Lf,Lf~jTd, j>l

Without losing generality, it is assumed that the

transformation T i maps origin to origin.

From Eqs. (6)-(8), the transformed state

dynamics are governed by

Here Lfi T'l stands for the Lie derivative of Til
with respect to f,:

such that following holds:

Lg,LJ, Til =0 for k=O, "', n,--2
Lg,L];-1 Til 7=0 (7)

RCr, O)=[(~/ljC1::J, xj, OJ)r,
j:l:ol

The following definition describes the desired

system behavior.

Definition 1: Given a control u (t) = 15 (x (t»,

the resulting closed-loop large-scale uncertain
system

x =/(x) +,1/(x, 0) +[G(x)
+,1C(x, o)]15(x)+R(x, 0)

x (to) =Xo (4)

is practically stable iff there exists an ro >0 such
that the following properties hold.

( i) Existence of solutions: The system (4)
possesses a solution x(') : [to, =) _ Rn.

(ii) Uniform boundedness : Given any ~E (0,

=) and any solution x (.) : [to, =) - Rn of Eq.

(4), there exists a d (~) < = such that Ilxoll ~~
implies Ilx(t)ll~d(~) for all tE[t, =).

(iii} Uniform ultimate boundedness : Given

any r > ro and any LE (0, =), there exists a

finite time T (~, r) such that holl ~~ implies Ilx
(t)II~ r for all t~to+T(~, r).

(iv) Uniform stability: Given any r > 1'0, there

exists a o( r) >0 such that Ilxoll~o( r) implies

Ilx (t) II ~ r for all t:2 to·

Throughout, we adopt the Euclidean vector
norm. Matrix norm is the corresponding induced
one.

--+ Rn l
,

3. Input-State Feedback Linearization

T, = [T,J, T i2,"', T'n,] T

Z,j = Til (x,)

Z,ni= (\7 L'X- j Tn)/,+ (\7 L'):-j Tn)gi

[ h,+ (l + Ii) Ill+ ~.N cu']
J;;:;cl
.J~i -

2:ilni-l)= (\7 LJ:- 2 Td)/i+ (\7 LJr 2 Til)

gi[h,+ (l + I,) Il, + ~ cu]
J=I
jot-i

= L]ij-j Til + (LgiL'j,:-2 Til)

[h,+ (l + I,) Il,+~ cu]
j-:t:-i

(5)S,: x,=f,(x,)+g,(x,)u,

is assumed to be globally input-state feedback
linearizable, that is, for every nominal subsystem,
there exists a global diffeomorphism T, ( .) : Rni

The nominal part of the system (1), which is

represented by
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+ 0 + I,) u,+j~ eu]
j*"i

Choose the control input as

(9)

( 10)

ing : First, we choose a constant a, such that

N

~aj'
ai>-.i~ (18)

Amln (Q,)

Second, we choose y, in the control (6) such that

The reason why these values are chosen will be

stated later in stability analysis.

The saturation type control term p, (z,) is cho

sen as following:

For convenience, we define

Z== [z{, zl, "', Z.z;]T ERn

I,(z" (5,)==I,(x" (5,)
h, (Z" (5,) == h, (x" (5,)

Equation (9) becomes

z,=A,z,+B,[l+ I,(z" (5')]lJ,

+Bi[Wn(Z" cri)+W'2(Z, (5i)] (II)

where the matrices A, and B, are given by

N

~ajaU

y, > 2(]\ Pli) (19)

(20)

( 14)

N

wdz, cr,) ==LRiLJ;-1 Tn~ Cu(z" Zj, (5,)
J=1
j~i

Assumption 2 : For each i, JEN, there exist

known and non-negative scalar constants au and

b, such that

and Wn (z" (5,) and W'2 (z" Zj, (5,) are defined as

Wn(Z" (5,) ==Lg,LJ;-1Tn h,(z" (5,)

-I,(z" (5,)LJ:Tn (13)

(21 )

(22)

p, (z') ;::0. 0 + PI,) -I I Wn (z" (5,)
+ I, (Zi' cr,) K,z, I

j.J.;(z,) =BTPiZiPi(Z,)

where Ci is a positive constant.

Remark : The nominal control Kizi and any

one of last two terms in Eq. (6) may render the

subsystem (1) practically stable if there is no

interconnections (Corless and Leitmann, 1981 ;

Barmish et al., 1983).

In order to investigate the controlled system

performance, we proceed with the following anal

ysis. First, take a C 1 function

(12)

flni-Ilx,n,-II]

olxlni-II

fIXI]

._[0Ini-1JXI

A,-~ OIXI

B,=[0IX1ni-lJ

N

max"'iELi IW'2 (z, cr,) I s;; ~ aulld + b, (15)
j=l

(23)

4. Non-Adaptive Robust Control
Design

The following decentralized non-adaptive

robust control is proposed

lJ,(z,) =K,z,- yBTF,z,- p,(z,) (16)

where K, is chosen such that A, +B,K, is

asymptotically stable, and matrix P, >° is the
solution of the following Lyapunov equation

Pi(Ai+ B,K,) + (A,+ B,K,) TF,= - Qi'
Q,>O (17)

The scalar Yi is positive and is specified as follow-

The total time derivative of V along any trajec

tory of the uncertain large-scale system (1) under

(6) is then given by

L(z, t) == V(x) = V(z)
1 N N

=--2~zrQ,z,+~[-BTP,z,
1=1 1=1

(l + l.l Pi + BTPiZ i ( /,Kiz i
N

+Wil)]+~[-(l+ I,)y,
i=1

(BTP,Zi) TBTPiZi
+BTP,ZiWiZ] (24)

With regard to the second term of Eq. (24), if I f.L,

I>c"
- BTF,Zi (l + T,) p,
+BTPiz,( liK,Zi+Wn)
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the worst case analysis of the third term in Eq.

(24):

Consequently, for all zER", the second term is
N

bounded by ~n+Pli)cj4. Now, we perform
i=1

Consequently, one has

Since 0, and I' are chosen to satisfy the inequal
ities (1S) and (19), .;, and Tj, must be positive

constants. Then the last term in Eq. (:\0) is bound
ed by

and

(25)

(26)

:s: - n+ Pli) 1 fl.' 1+ n+ PI,) 111, 1 =0

and if I fl.' I:s:c"
- BlP,z, n+ T,) p,
+BlP,z, ( T,K,z, +Wil)

:s: _JL:;i,t[ fl.' 12+ n+ PI,) II fl.' I

< n+ Pi,) c,~
- 4

where 0, is a positive constant. Therefore, the

total time derivative of V satisfies the following
inequality

+BlP,z,w,z]
N

:s: ~[ - n+Pli) I' [ BlP,z, 1

2

i=1

N

+ IBJ P,Z, I (~auIIZJII + h,) ]
j==l

Using the algebraic inequality

one has

lIt' l\i

~ IBlP,z, I (~aullzJ)
i=1 j=l

N NIl I 1
=, ~ ~ IBlP,z, IOj2au2 OJ ~2 au 211 ZJII

i=1j=}

N N 1
:s ~1#IZ(ojau I BlP,z, 1

2

+ OJ ~1 aullzJ2)

(27)

(28)

(29)

N

L (z, t):s: - ~ f;,1Iz,112 +K
1·""1

:S: - ';llzl12 +K

where

';=min'EN{f;,}

K ==±[(1 + (Jli)C-'-+~lJLJ
'=1 4 4Tj,

Now, one has

L(z, t)<0
for all (z. t) E R" x R such that

Ilzll»1= SI

Let

T~I(Z)==[Tl~T(ZI)' T2- T (ZZ)'

"', I',:;T (ZN) F
"1 =osuP"E"os,11 1'-1 (z) II

Finally, one has

V (x) <0

for all x E R" such that

(31 )

(32)

(33)

(34)

(35)

Theorem 1: Subject Assumption 1 and 2, the

uncertain large-scale system under the proposed
decentralized robust controls Eq. (16) is practi

cally stable.
Proof: The right-hand side of Eqs. (1) under

(16) is Caratheodory by using some standard
results in analysis. The Lyapunov-based argu
ment for the feedback linearized system is already
shown above. The result follows based on the
standard arguments in Corless and LeitmannLet

1 N [L(z, t):S:-Zt-1 ,1mln(Q,)

- j~ 0,-laj ,Jllz,112

+~ n+Pli)C,
'~1 4

+~[( - (1 + Pli) I'

+ ~~10jau) I BlP,z, 12

+b,1 BlP,z, I] (30)

Ilxll>,,1 (36)



182 Myung-Chul Han

(1981).

5. Adaptive Robust Control Design

If the bound of uncertainty is unknown, the

aforementioned robust control is not applicable.

Then, it is desirable to introduce an adaptive
scheme which is capable of tracking the bound.

Additional assumptions will be imposed on the
uncertainty.

Assumption 3 : There exist (unknown) con

stants di and ei such that

maxcriE~i I Wi! (Zi, oJ I :s: dillz,11 + ei (37)

for all (Zi, Q'i)ERniXL;i'

Assumption 4: Each subsystem does not have

uncertainty in the input matrix, that is,

Y=(YI, Y2' ... , YNYERN
YUo) = Yo (44)

Y=(Y1, Y2, ... , YNYERN (45)

Theorem 2: Suppose that the uncertain large

scale system (39) satisfies Assumption 1-4 but

with aij and b, in Eg. (IS) unknown. If the system

(39) is subject to the decentralized adaptive

robust control (4I)-(43), then the overall com

bined controlled system (39) and (43) is practi
cally stable.

Proof: The Lyapunov function candidate is

taken as

V(x, y) = V(z, y)
1 N N

=2~ZJPiZi +~ki(Yi- y,)2

(46)

where

Subject to Assumption 4, the uncertain system

(I) can be rewritten in a compact form as

5: i =f(x) +Llf(x, Q')
+C(x)u+R(x, Q')

xUo)=xo (39)

The feedback linearized system (II) also can be
rewritten as following

Si: zi=Aizi+BilJ,+Biwi!(z" oJ
+ B iwi2 (z, a,)

z;(to) =Z,o (40)

The following class of adaptive robust controls is

proposed

}i
1 N N

= ---L;zTQ,Zi+ L; (- Y,
2 i~] i~l

I BTPiZi 1
2 +BTPiZiWi!)

N

- L; (Yi- y,) 1 BTPiZi 1
2

i=1

N

+ 2:. B TP'ZiW i2
i=1

N

+ 2:. (2k,lil (y,- y,) IBTP,z;jZ
i=1

-2k,liZ(Yi- y,) y,] (47)

where k i is a positIve constant. The choice of
values of ki and Yi will be stated later. The total
time derivative of V(x, y) along any trajectory

of the combined system is given by:

L(z, Y, t) =V(x, y) = V (z, y)
N N

= L; zTPiZi+ L;2k, (Yi- y,)
i=1 i=1

(38)

(41 )

Llgi(Xi, Q',)=O

(42)

The adaptive parameter Yi is governed by the
following dynamics

y,(t)=lill BTPiZiU) 1
2-1'2Y'U)

YiUO)=YiO (43)

where lil and li2 are arbitrary positive constants.

Remark : The adaptive scheme (43) is a
leakage-type adaptive scheme which belongs to
the a-modification class (Chen, 1990 ; Ioannou
and Kokotovic, 1983).

For convenience, let

The constant k, is chosen such that

2k,l,]=1 (48)

Therefore, using Egs. (IS), (28), and (37), one has

L(z, Y, t):s:- ~~[,1mln(Q,)-j~ai]aji]llz,llz

+~[ -(Yi- ~ ~]ajaij) IBTPiZi IZ

+ (d,llz,11 + e,+ b,) I bFPiZi I]
N

- L;2kJ,z(Yi- Yi)Z
i='1
N

- "E,2kJ,z(Yi- Yi) Y, (49)
i=l
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First, The constant Bi is chosen such that

where ))i is some positive constant. Next, the
constant Yi in Eq. (46) is chosen such that

Therefore, with these choices,

1 N
Yi-2~IBjaiJ>0 (52)

ai= 2
1 Amln(Qi) - 2

1 ~Bi-laji
J=l

- dl >0 (53)

4( Yi - ~ j~1 Bjaij)

Subject to Eq. (52), the maximum value of the
second term in Eq. (49) is given by

(dillzill+ei+bY

4(Yi-+~Bjaij)

This leads to

(59)

(58)

Let

o52=suPII<,I=s,ll[ T-T (z). Yl - Yl,
Y2 - Y2. .... YN - YN] II (60)

Finally. one has

V(x. y)<O (61)

for all (x. y) ERn X RN such that

II[x T
• Yl- Yl, Y2- Y2, ....

YN- YN]II >052 (62)

The four properties of Definition 1 then follow
(Leitmann, 1981 ; Chen, 1990).

[(.;. t) <0

for all (.;. t) ERnxN xR such that

11.;11 > m2+.jm~+4mlm3
2m l

Combining the results of Eqs. (53) - (56), one has

L (.;. t) =L (z. Y. t) s - mlll.;112
+ m211.;11 +m3 (57)

Now. it is shown that

(50)

(51 )1 N dl
Yi>-2~BjaiJ+~4.

j=l V'z

N

L (z. Y. t) s - ~ (aillz.112_;1illzill- ¢I,)
i=1

';=[ZT. Yl-YI, .. ·• YN-YNY
ml=miniEN {ai. 2kdd
m2=[;1f+'" + ;1'i+ (2kdI2)2+ ...

+ (2kNIN2 )2]t
N

m3= LJ. ¢Ii
i;:;;;;}

6. Example

Zll=Xll. ZI2=Xfl+XI2. Z21=X21,
Z22=X22. (65)
Ul = - 2X?1 - 2XllX12 +Xll + ))1,

u2=xil + ))2. (66)

we can get

Remark: The constants Bi and Yi are chosen
such that Eqs. (52) and (53) are satisfied. But
these constants do not appear in the control. (42)

and (43), and show only in the proof of Theorem
2. Therefore, only their existence needs to be
proven.

Consider the following system:

81 : Xll=X211+XI2
X12= - Cl (t) Xll + Ul + ('2(t) X21 (63)

S2 : X21 =X22
X22=-X;)\+U2+C3(t)Xll (64)

where O.5SCi(t) s1.5. i=l, 2. 3. The nominal
values of the time-varying uncertain parameters Ci

(t)'s are taken as 1.

With the following state transformation and the
control inputs

(55)

(54)

(56)

2d,(e.+ bi)

4(Yi-+J~Bjaij)
(ei+bY

N

+LJ.2kd.2IYil·1 Yi-Yil
i=1

N

= - LJ. (aillziI1 2+2kdi2(Yi- yY)
1=1

+ [;11"';1N2kdI2 I Yi I···
2kt.1N2 I YN I ]
.[llzdl·.,IIZNIII Yl-Yll·.,1 YN

N

- YN IY+ LJ. ¢Ii
i=l

;1i

where

Let
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The uncertain portions are bounded as following:

1(/)11 I= I (1- C1) Zl1 I~ 0.s11Z111
I (/)121 = 1C2Z21 I~ 1.sllz211
I (/)21 1=0
1(/)221=1 C3Z11 1~1.sllz111 (68)

Since Eqs. (IS) and (37) are satisfied, both non

adaptive and adaptive robust controls are appli

cable. If we choose

ill =Z12

i 12= 111 + (1- C1) Zl1 + C2Z21

i 21=Z22

i 22= 112 + C3Z11 (67)

Ti_ .18

Fig. 2 Response of subsystem 2 under non-adaptive
robust control

(69)

(72)

(70)

K,=[-1 -2], Qi=-I, i=l, 2,

then,

[
l.S O.SJ .

Pi = 0.5 O.S' 1=1, 2.

The nonlinear gain Pi (z,) in Eq. (21) is now

PI (Zl) =o.sllzdl,
P2(Zz) =0.

The non-adaptive robust controllers are

U1 = --- 2X?1 - 2XllX12 +X11 -1.6zll

-- 2·6z12 - PI (Zl) ,

U2=xi1-1.6z21-2.6z22- P2 (Z2).

The adaptive robust controllers are

U1 = - 2X?1 - 2X11X12 + X11 - Zll - 2Z12

- O.S h (Zll +Z12) ,

U2 = xiI - Z21 - 2Z22 - O.S 72 (Z21 + Z22) , (71)

with the following dynamics of the adaptive

parameters 7,'S:

)-1 = 111 (O,SZl1 +0,SZ12) 2-/127),

rz= 121 (0,SZ21 +O,SZ22) 2-/2272'

Fig. 3 Control history of non-adaptive robust con
trol

Ti_ .18

Fig. 4 Response of subsystem 1 under adaptive
robust control

.a1

.u

Fig. 1 Response of subsystem 1 under non-adaptive
robust control

Fig. 5 Response of subsystem 2 under adaptive
robust control
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1. ..

been constructed. In non-adaptive control, aJl the
bounds of uncertainties are given and the control
gain parameters are dependent on the bounds.
The adaptive control scheme is applicable to the
system which has no uncertainty in the input
matrix. However, this scheme does not need to
know the bound of uncertainty.

References
Fig. 6 Histories of adaptive parameters

a Input

Fig. 7 Control history of adaptive robust control

Simulation results are shown graphically in
Figs. 1-7. Figures 1-3 represent the system
responses and inputs for the non-adaptive robust
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